Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Mauro Mocerino, \ddagger Brian W. Skelton,* Robert V. Stick and Allan H. White
Chemistry, The University of Western Australia, 35 Stirling Highway, Crawley, WA 6009,
\section*{Australia}
\# Present address: Department of Applied Chemistry, Curtin University, PO Box U1987, Perth, Australia.

Correspondence e-mail:
bws@crystal.uwa.edu.au

Key indicators

Single-crystal X-ray study
$T=300 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.012 \AA$
R factor $=0.054$
$w R$ factor $=0.099$
Data-to-parameter ratio $=13.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

trans-5-(4-Bromobenzoyloxy)-2-phenyl-1,3-dioxane

The structure of the major product from the treatment of benzaldehyde with glycerol, derivatized as its crystalline 4-bromobenzoate, is shown to be the title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{4}$, by a room-temperature single-crystal X-ray structure determination, providing a rare example of a structurally characterized 1,3-dioxane system.

Comment

The treatment of glycerol with benzaldehyde yields benzylidene glycerol as a mixture of four possible isomers (Baggett et al., 1960). On esterification of the mixture with 4-bromobenzoyl chloride, the trans-1,3-dioxane (I) was readily obtained as a pure and substantial crop from the reaction mixture, the needles being characterized by a roomtemperature single-crystal X-ray structure determination.

Compound (I) crystallizes in triclinic space group $P \overline{1}$, a single molecule, devoid of crystallographic symmetry, comprising the asymmetric unit of the structure. Bond lengths and angles in the molecule are unexceptional; the carboxylate CCO_{2} array is approximately coplanar with its parent six-Catom aromatic ring [interplanar dihedral angle $=11.7(3)^{\circ}$], the latter in turn having a dihedral angle of $80.0(3)^{\circ}$ with the other aromatic plane. The aromatic planes, parallel and close to their inversion images, appear to be a significant determinant of crystal packing. The carboxylate and phenyl pendants lie equatorial to the dioxane ring, which adopts a chair conformation, with ring torsion angles in the bonds, sequentially beginning with $\mathrm{O} 1-\mathrm{C} 2$, closely ranged about 60°, being -61.2 (8), 58.7 (8), -58.6 (8), 56.0 (9), -55.3 (9) and 58.7 (8) ${ }^{\circ}$. Well defined structurally characterized examples of the 1,3dioxane ring (in contrast to 1,4-dioxane) are very few; examples are found, O, O^{\prime}-bridging pairs of Ag^{I} atoms, in $\mathrm{AgAsF}_{6} \cdot 3 \mathrm{C}_{4} \mathrm{H}_{8} \mathrm{O}_{2}$ (Jones et al., 1984) and, less precisely, as solvents of crystallization or clathrates of larger organic molecules (Caira et al., 1999; Gdaniec et al., 1995).

Experimental

4-Bromobenzoyl chloride ($260 \mathrm{mg}, 1.2 \mathrm{mmol}$) was added to a solution containing a mixture of four isomers of benzylidene glycerol $(180 \mathrm{mg}, 1.0 \mathrm{mmol})$ in dichloromethane/pyridine ($9: 1,10 \mathrm{ml}$) and the solution was stirred (room temperature, 6 h). Excess acid chloride was decomposed by the addition of water (0.5 ml) and, after an hour, the solvent was removed. Normal workup ($\mathrm{Et}_{2} \mathrm{O}$), followed by

Received 16 March 2004 Accepted 22 March 2004 Online 27 March 2004

Figure 1
Projection of the molecule. Non-H-atom displacement ellipsoids are shown at the 50% probability level and H atoms are represented by spheres of arbitrary radii of $0.1 \AA$.
chromatography (EtOAc/hexane, 2:8), allowed the isolation of pure (I) $(45 \mathrm{mg})$ as needles (m.p. $427-429 \mathrm{~K}) .{ }^{1} \mathrm{H}$ NMR $(80 \mathrm{MHz}): \delta 3.70-$ $3.97(m$, H4ax,6ax $), 4.53\left(d d d, J_{4,4}=9.9 \mathrm{~Hz}, J_{4 \mathrm{eq}, 5}=5.1 \mathrm{~Hz}, J_{4 \mathrm{eq}, 6 \mathrm{eq}}=\right.$ $1.2 \mathrm{~Hz}, \mathrm{H} 4 \mathrm{eq}, 6 \mathrm{eq}), 5.27\left(t t, J_{4 \mathrm{ax}, 5}=9.9 \mathrm{~Hz}, \mathrm{H} 5\right), 5.53(s, \mathrm{H} 2), 7.37-8.10$ ($m, 9 \mathrm{H}, \mathrm{Ar}$).

Crystal data
$\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{BrO}_{4}$
$M_{r}=363.22$
Triclinic, $P \overline{1}$
$a=8.117$ (4) A
$b=9.977$ (7) \AA
$c=10.737$ (6) \AA
$\alpha=113.47(4)^{\circ}$
$\beta=90.49$ (4) ${ }^{\circ}$
$\gamma=93.98(5)^{\circ}$
$V=795.0(9) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.517 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Mo } K \alpha \text { radiation } \\
& \text { Cell parameters from } 6 \\
& \quad \text { reflections } \\
& \theta=9.0-12.7^{\circ} \\
& \mu=2.6 \mathrm{~mm}^{-1} \\
& T=300(2) \mathrm{K} \\
& \text { Plate, colourless } \\
& 0.40 \times 0.21 \times 0.09 \mathrm{~mm}
\end{aligned}
$$

Data collection

Syntex $P \overline{1}$ diffractometer
$2 \theta-\omega$ scans
Absorption correction: Gaussian
(Xtal3.5; Hall et al., 1995)
$T_{\text {min }}=0.55, T_{\text {max }}=0.81$
2718 measured reflections
2718 independent reflections
1251 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.054$
$w R\left(F^{2}\right)=0.099$
$S=1.17$
2718 reflections
199 parameters

Table 1
Selected geometric parameters $\left(\AA^{\circ},{ }^{\circ}\right)$.

O1-C2	$1.402(9)$	C5-C6	$1.498(11)$
O1-C6	$1.430(9)$	C5-O5	$1.445(8)$
C2-O3	$1.401(9)$	O5-C50	$1.361(8)$
C2-C21	$1.495(9)$	C50-O50	$1.184(11)$
O3-C4	$1.427(9)$	C54-Br54	$1.890(7)$
C4-C5	$1.515(12)$		
C2-O1-C6	$112.2(6)$	C4-C5-O5	$107.7(7)$
O1-C2-O3	$110.9(5)$	C6-C5-O5	$111.9(6)$
O1-C2-C21	$108.0(7)$	O1-C6-C5	$108.6(6)$
O3-C2-C21	$109.3(5)$	C5-O5-C50	$115.1(6)$
C2-O3-C4	$111.1(6)$	O5-C50-O50	$123.7(6)$
O3-C4-C5	$109.3(8)$	O5-C50-C51	$111.6(7)$
C4-C5-C6	$108.6(6)$	O50-C50-C51	$124.7(6)$

H atoms were located from difference Fourier maps and placed at idealized positions $\left[\mathrm{C}-\mathrm{H}=0.95 \AA\right.$ and $U_{\text {iso }}(\mathrm{H})=1.25$ times $\left.U_{\text {eq }}(\mathrm{C})\right]$. The maximum electron-density peak is located $0.088 \AA$ from the Br atom.

Data collection: Syntex Software (Syntex, 1974); cell refinement: Syntex Software; data reduction: Xtal3.5 (Hall et al., 1995); program(s) used to solve structure: Xtal3.5; program(s) used to refine structure: CRYLSQ in Xtal3.5; molecular graphics: Xtal3.5; software used to prepare material for publication: BONDLA and CIFIO in Xtal3.5.

References

Baggett, N., Brimacombe, J. S., Foster, A. B., Stacey, M. \& Whiffen, D. H. (1960). J. Chem. Soc. pp. 2574-2581.

Caira, M. C., Coetzee, A., Nassimbeni, L. R., Weber, E. \& Wierig, A. (1999). Supramol. Chem. 10, 235-241.
Gdaniec, M., Talipov, S. A. \& Ibragimov, B. T. (1995). Pol. J. Chem. 69, 11331143.

Hall, S. R., King, G. S. D. \& Stewart, J. M. (1995). The Xtal3.5 User's Manual. University of Western Australia, Perth: Lamb.
Jones, P. G., Roesky, H. W., Liebermann, J. \& Sheldrick, G. M. (1984). Z. Naturforsch. Teil B, 39, 1729-1731.
Syntex (1974). Syntex Software. Syntex Analytical Instruments, Cupertino, Califormia, USA.

